свойства алгебраических выражений алгебраические тождества

Тождество

Тождество — это равенство, обе части которого являются тождественно равными выражениями. Тождества делятся на буквенные и числовые.

Тождественные выражения

Два алгебраических выражения называются тождественными (или тождественно равными), если при любых численных значениях букв они имеют одинаковую численную величину. Таковы, например, выражения:

Оба представленных выражения, при любом значении x будут равны друг другу, поэтому их можно назвать тождественными или тождественно равными.

Так же тождественными можно назвать и числовые выражения, равные между собой. Например:

Буквенные и числовые тождества

Буквенное тождество — это равенство, которое справедливо при любых значениях входящих в него букв. Другими словами, такое равенство, у которого обе части являются тождественно равными выражениями, например:

Числовое тождество — это равенство, содержащее только числа, выраженные цифрами, у которого обе части имеют одинаковую численную величину. Например:

Тождественные преобразования выражений

Все алгебраические действия представляют собой преобразование одного алгебраического выражения в другое, тождественное первому.

При вычислении значения выражения, раскрытии скобок, вынесении общего множителя за скобки и в ряде других случаев одни выражения заменяются другими, тождественно равными им. Замену одного выражения другим, тождественно равным ему, называют тождественным преобразованием выражения или просто преобразованием выражения. Все преобразования выражений выполняются на основе свойств действий над числами.

Рассмотрим тождественное преобразование выражения на примере вынесения общего множителя за скобки:

Выполнение данного преобразования основано на распределительном законе умножения.

Источник

algebraicheskie vyrazheniya

Математические термины

Алгебра — это наука, изучающая действия над числовыми и буквенными величинами. Кроме того, она занимается решениями уравнений и связанными с ними действиями. Под буквенными величинами обычно понимают конкретные или переменные числовые значения. Входящие в состав записи буквы могут иметь различные числовые величины. Например, в формуле S * 4 + 12 символом S может быть заменена известная или неизвестная величина или даже целое выражение.

Математики под алгебраическим выражением понимают запись, составленную со смыслом, состоящую из букв и цифр, обозначающих числа. При этом она может содержать скобки и знаки арифметических действий. Исходя из этого простейшего определения можно утверждать, что формулы 2 * k — s, 4 * (y — 3/2), 0,89 * a — g * (9a + 4b), a 2 и (29p — 56) / log (a + c) являются примерами алгебраических выражений. Так как буквы в записях обозначают различные числа, то их считают переменными, а само уравнение — выражением с переменной.

algebraicheskoe vyrazhenie

Если же значение переменной известно и его можно подставить на место буквенного обозначения, то результат, полученный после выполнения указанных в уравнении действий, называется ответом алгебраического выражения. Но если число, подставляемое вместо буквы, приводит к бессмысленности записи, то оно считается недопустимым. Из этого можно сделать вывод, что одна и та же алгебраическая запись при различных величинах букв может иметь отличные значения.

На практике приходится сталкиваться с довольно сложными и громоздкими алгебраическими выражениями, поэтому над ними приходится выполнять ряд действий, правил, законов или использовать свойства для упрощения записи.

Кроме определений здесь применяется понятие «тождественность». Под ним понимают два выражения, для которых при любых значениях переменных, входящих в их состав, будет справедливо их равенство, например, 56* (x+с) = 56 * x + 56 * с.

Эти два выражения можно заменить друг другом или, выражаясь математическим языком, — «выполнить тождественное преобразование».

Виды выражений

В школе на уроках алгебры приходится сталкиваться с различными видами выражений. Обычно они состоят из нескольких членов. В математике существует группирование, объединяющее сходные элементы. Обучение понятиям начинают в седьмом классе с того, что приводят следующие определения:

takoe algebraicheskoe vyrazhenie

Многочлен всегда подразумевает выполнение действий. При описании понятия используют и такие термины, как коэффициент, член, степень. Во время работы с одночленами применяют тождественное их приведение к стандартному виду.

В нём выражение представляют как произведение числового множителя и натуральной степени разных переменных, например, 2 * a, −x * 3.

Выражения в алгебре могут быть следующих видов:

Все указанные виды относят к простым, но с 7 класса алгебраические выражения будут усложняться. Сложный вид записи обычно состоит из многочлена, включающего в себя извлечение корня, логарифмы и возведение в степень, например, ln (x 2 — 1) * tg ((x + p) / cos x). И хоть среди них попадаются перечисленные типы, их относят к общему виду.

Вычисление сложных выражений подразумевает выполнение преобразований, которые позволят проще решить задание и найти правильный ответ.

Алгебраические действия

Решая задачу, приходится выполнять те или иные преобразования. Чаще всего сложность задания определяется громоздкостью и объёмом соответствующих преобразований, поэтому в школе на уроках элементарной математики часто попадаются задачи на упрощения.

algebraicheskie vyrazheniya

Основу всех алгебраических действий составляют три закона. Это правила, касающиеся сложения и умножения: переставное, соединительное и распределительное. Но наряду с ними применяют и формулы сокращённого умножения.

На начальном этапе обучения рекомендуется даже записать данные правила отдельно на листик и пользоваться им, пока применение законов не дойдёт до автоматизма. Вот некоторые практические рекомендации, решаться с которыми примеры будут намного легче:

chislovye algebraicheskie

Не стоит забывать и о такой операции, как деление многочлена. Для этого используют метод столбика. Заключается он в размещении слагаемых многочлена в порядке убывания степени переменной и разделения первого слагаемого числителя многочлена на первое слагаемое знаменателя.

Затем результат умножают на делитель и отнимают ответ от делимого.

Применение преобразований

Алгебраические выражения, показывающие, что одна величина больше другой или равна ей, называют уравнениями и равенствами. При этом их используют для составления формул, то есть для записи, выражающей зависимость между двумя или несколькими переменными. Это удобно, так как преобразования позволяют привести формулу к простому для запоминания виду.

algebraicheskie chisla

При решении примеров важно знать все существующие методы. Какой из них применять, конкретно указать нельзя, всё зависит от личных предпочтений и опыта решения подобных заданий. Например, пусть нужно упростить сложное выражение (a 3 (b — c) + b 3 (c — a) + c 3 (a — b)) / (a 2 (b — c) + b 2 (c — a) + c 2 (a — b)).

Сначала можно попробовать разложить на множители делитель и делимое. Один из вариантов преобразования числителя следующий:

a 3 (b — c) + b 3 (c — a) + c 3 (a — b) = a 3 b — b 3 c — a 3 c + b 3 c + c 3 (a — b) = ab (a 2 — b 2 ) = ab (a 2 — b 2 ) — c (a 3 — b 3 ) + c 3 (a — b) = (a — b) (ab (a + b) — c (a 2 + ab + b 2 ) + c 3 = (a — b) (a 2 b — a 2 c + ab 2 — abc + c 3 — cb 2 ) = (a — b) (a 2 (b — c) + ab (b — c) — c (b 2 — c 2 ) = (a — b) (b — c) (a 2 — c 2 + ab — cb) = (a — b) (b — c) (a — c) (a + b + c).

По аналогии раскладывая знаменатель, можно прийти к результату: (a — b) (b — c) (a — c). В итоге получится равенство (a 3 (b — c) + b 3 (c — a) + c 3 (a — b)) / (a 2 (b — c) + b 2 (c — a) + c 2 (a — b)) = ((a — b) (b — c) (a — c) (a + b + c)) / ((a — b)(b — c)(a — c)) = a + b + c.

В числителе возможно выделить множитель (a — b) на том основании, что делимое равно нулю, когда a совпадает с b. Обычно в двух взаимно обратных операциях выполнение одной сложнее, чем другой. Это касается, в частности, выполнения умножения алгебраических выражений и разложения на множители или возведения в степень с извлечением корня. Например, легко увидеть, что (5 + 3 √2) 2 = 43 + 30 √2, но значительно труднее прочитать это равенство справа налево.

vychisleniya algebraicheskie

Следует помнить, что когда при решении задачи встречается выражение подкоренного вида √с + n * √k или √a + b√k, то необходимо попытаться добыть соответствующий корень. Если же это невозможно, то нужно воспользоваться подбором.

Если нужно упростить выражение √11 + 6 √ 2, то его можно представить как c + b √2. Следовательно, справедливо будет следующее равенство: 11 + 6 √2 = с 2 + 2b 2 + 2 cb √2. Поиск целых (рациональных) c и b приведёт к решению системы: a 2 + 2b 2 = 11, ab = 3.

При этом подобрать нужную пару целых легко: a = 3, b = 1, то есть можно записать равенство как √11 + 6√ 2 = 3 + √2.

Источник

Тождественные преобразования выражений, их виды

Тождественные преобразования представляют собой работу, которую мы проводим с числовыми и буквенными выражениями, а также с выражениями, которые содержат переменные. Все эти преобразования мы проводим для того, чтобы привести исходное выражение к такому виду, который будет удобен для решения задачи. Основные виды тождественных преобразований мы рассмотрим в этой теме.

Тождественное преобразование выражения. Что это такое?

Впервые встречаемся с понятием тождественных преобразованный мы на уроках алгебры в 7 классе. Тогда же мы впервые знакомимся с понятием тождественно равных выражений. Давайте разберемся с понятиями и определениями, чтобы облегчить усвоение темы.

Тождественное преобразование выражения – это действия, выполняемые с целью замены исходного выражения на выражение, которое будет тождественно равным исходному.

Часто это определение используется в сокращенном виде, в котором опускается слово «тождественное». Предполагается, что мы в любом случае проводим преобразование выражения таким образом, чтобы получить выражение, тождественное исходному, и это не требуется отдельно подчеркивать.

Проиллюстрируем данное определение примерами.

Замена выражения 2 · a 6 на выражение a 3 – это тождественное преобразование, тогда как замена выражения x на выражение x 2 не является тождественным преобразованием, так как выражения x и x 2 не являются тождественно равными.

Тождественные преобразования и ОДЗ

Ряд выражений, которые мы начинаем изучать в 8 классе, имеют смысл не при любых значениях переменных. Проведение тождественных преобразований в этих случаях требует от нас внимания к области допустимых значений переменных (ОДЗ). Выполнение тождественных преобразований может оставлять ОДЗ неизменной или же сужать ее.

При выполнении перехода от выражения a + ( − b ) к выражению a − b область допустимых значений переменных a и b остается прежней.

Переход от выражения x к выражению x 2 x приводит к сужению области допустимых значений переменной x от множества всех действительных чисел до множества всех действительных чисел, из которого был исключен ноль.

Тождественное преобразование выражения x 2 x выражением х приводит к расширению области допустимых значений переменной x от множества всех действительных чисел за исключением нуля до множества всех действительных чисел.

Сужение или расширение области допустимых значений переменных при проведении тождественных преобразований имеет значение при решении задач, так как может повлиять на точность проведения вычислений и привести к появлению ошибок.

Основные тождественные преобразования

Давайте теперь посмотрим, какими бывают тождественные преобразования и как они выполняются. Выделим те виды тождественных преобразований, с которыми нам приходится иметь дело чаще всего, в группу основных.

Помимо основных тождественных преобразований существует ряд преобразований, которые относятся к выражениям конкретного вида. Для дробей это приемы сокращения и приведения к новому знаменателю. Для выражений с корнями и степенями все действия, которые выполняются на базе свойств корней и степеней. Для логарифмических выражений действия, которые проводятся на основе свойств логарифмов. Для тригонометрических выражений все действия с использованием тригонометрических формул. Все эти частные преобразования подробно разбираются в отдельных темах, которые можно найти на нашем ресурсе. В связи с этим в этой стстье мы на них останавливаться не будем.

Перейдем к рассмотрению основных тождественных преобразований.

Перестановка местами слагаемых, множителей

Начнем с перестановки слагаемых местами. С этим тождественным преобразованием мы имеем дело чаще всего. И основным правилом здесь можно считать следующее утверждение: в любой сумме перестановка слагаемых местами не отражается на результате.

Основано это правило на переместительном и сочетательном свойствах сложения. Эти свойства позволяют нам переставлять слагаемые местами и получать при этом выражения, которые тождественно равны исходным. Именно поэтому перестановка слагаемых местами в сумме является тождественным преобразованием.

В качестве слагаемых в сумме могут выступать не только числа, но и выражения. Их точно так же, как и числа, можно переставлять местами, не влияя на конечный результат вычислений.

Точно так же, как и слагаемые, в исходных выражениях можно менять местами множители и получать тождественно верные уравнения. Проведение этого действия регулируется следующим правилом:

В произведении перестановка множителей местами не влияет на результат вычислений.

Основано это правило на переместительном и сочетательном свойствах умножения, которые подтверждают верность тождественного преобразования.

Раскрытие скобок

Скобки могут содержать записи числовых выражений и выражений с переменными. Эти выражения могут быть преобразованы в тождественно равные выражения, в которых скобок не будет вообще или их будет меньше, чем в исходных выражениях. Этот способ преобразования выражений называют раскрытием скобок.

Правила преобразования выражений со скобками мы подробно разобрали в теме «Раскрытие скобок», которая размещена на нашем ресурсе.

Группировка слагаемых, множителей

В случаях, когда мы имеем дело с тремя и большим количеством слагаемых, мы можем прибегнуть к такому виду тождественных преобразований как группировка слагаемых. Под этим способом преобразований подразумевают объединение нескольких слагаемых в группу путем их перестановки и заключения в скобки.

При проведении группировки слагаемые меняются местами таким образом, чтобы группируемые слагаемые оказались в записи выражения рядом. После этого их можно заключить в скобки.

Группировка множителей проводится аналогично группировке слагаемых.

Слагаемые и множители, которые группируются, могут быть представлены как простыми числами, так и выражениями. Правила группировки были подробно разобраны в теме «Группировка слагаемых и множителей».

Замена разностей суммами, частных произведениями и обратно

Мы можем переходить к суммам от любых разностей. Аналогично мы можем произвести обратную замену.

Это правило было положено в основу правила деления обыкновенных дробей.

Точно также по аналогии деление может быть заменено умножением.

Выполнение действий с числами

Выполнение действий с числами подчиняется правилу порядка выполнения действий. Сначала проводятся действия со степенями чисел и корнями из чисел. После этого мы заменяем логарифмы, тригонометрические и прочие функции на их значения. Затем выполняются действия в скобках. И затем уже можно проводить все остальные действия слева направо. Важно помнить, что умножение и деление проводят до сложения и вычитания.

Действия с числами позволяют преобразовать исходное выражение в тождественное равное ему.

Решение

Действиям с числами могут предшествовать другие виды тождественных преобразований, таких, например, как группировка чисел или раскрытие скобок.

Решение

Выполним действия в скобках: ( 3 − 2 + 11 ) + ( 2 · 2 · 4 ) · x · y 3 = 12 + 16 · x · y 3

Ответ: 3 + 2 · ( 6 : 3 ) · x · ( y 3 · 4 ) − 2 + 11 = 12 + 16 · x · y 3

Если мы работаем с числовыми выражениями, то целью нашей работы будет нахождение значения выражения. Если же мы преобразуем выражения с переменными, то целью наших действий будет упрощение выражения.

Вынесение за скобки общего множителя

В тех случаях, когда слагаемые в выражении имеют одинаковый множитель, то мы можем вынести этот общий множитель за скобки. Для этого нам сначала необходимо представить исходное выражение как произведение общего множителя и выражения в скобках, которое состоит из исходных слагаемых без общего множителя.

Освежить в памяти правил вынесения общего множителя за скобки вы можете в соответствующем разделе нашего ресурса. В материале подробно рассмотрены правила вынесения общего множителя за скобки и приведены многочисленные примеры.

Приведение подобных слагаемых

Теперь перейдем к суммам, которые содержат подобные слагаемые. Тут возможно два варианта: суммы, содержащие одинаковые слагаемые, и суммы, слагаемые которых отличаются числовым коэффициентом. Действия с суммами, содержащими подобные слагаемые, носит название приведения подобных слагаемых. Проводится оно следующим образом: мы выносим общую буквенную часть за скобки и проводим вычисление суммы числовых коэффициентов в скобках.

Замена чисел и выражений тождественно равными им выражениями

Числа и выражения, из которых составлено исходное выражение, можно заменять тождественно равными им выражениями. Такое преобразование исходного выражения приводит к тождественно равному ему выражению.

Выполненное преобразование искусственное. Оно имеет смысл лишь при подготовке к проведению других преобразований.

Прибавление и вычитание одного и того же числа

Прибавление и одновременное вычитание одного и того же числа или выражения являетс искусственным приемом преобразования выражений.

Источник

Тождества: определение, обозначение, примеры

Начнем разговор о тождествах, дадим определение понятия, введем обозначения, рассмотрим примеры тождеств.

Что представляет собой тождество

Начнем с определения понятия тождества.

Тождество представляет собой равенство, которое верно при любых значениях переменных. Фактически, тождеством является любое числовое равенство.

По мере разбора темы мы можем уточнять и дополнять данное определение. Например, если вспомнить понятия допустимых значений переменных и ОДЗ, то определение тождества можно дать следующим образом.

Тождество – это верное числовое равенство, а также равенство, которое будет верным при всех допустимых значениях переменных, которые входят в его состав.

Про любые значения переменных при определении тождества речь идет в пособиях и учебниках по математике для 7 класса, так как школьная программа для семиклассников предполагает проведение действий исключительно с целыми выражениями (одно- и многочленами). Они имеют смысл при любых значениях переменных, которые входят в их состав.

Программа 8 класса расширяется за счет рассмотрения выражений, которые имеют смысл только для значений переменных из ОДЗ. В связи с этим и определение тождества меняется. Фактически, тождество становится частным случаем равенства, так как не каждое равенство является тождеством.

Знак тождества

Обычно запись тождества ничем не отличается от записи обыкновенного равенства. Знак тождества может быть применен для того, чтобы подчеркнуть, что перед нами не простое равенство, а тождество.

Примеры тождеств

Обратимся к примерам.

Равенства 2 + 3 = 5 и 7 − 1 = 2 · 3 также можно считать тождествами, так как они являются вернными. Здесь также допустима запись 2 + 3 ≡ 5 и 7 − 1 ≡ 2 · 3 .

Тождества могут содержать не только числа, но также и переменные.

Это значит, что приведенные равенства не являются тождествами.

В математике мы постоянно имеем дело с тождествами. Делая записи действий, производимых с числами, мы работаем с тождествами. Тождествами являются записи свойств степеней, свойств корней и прочие.

Источник

Алгебраические выражения

Содержание:

Алгебраические выражения. Основные понятия

Алгебраические выражения — это одна или несколько алгебраических величин (чисел и переменных), связанных между собой знаками арифметических операций: сложения, вычитания, умножения и деления, а также извлечения корня и возведения в степень (причём показатели корня и степени должны обязательно быть целыми числами) и знаками последовательности применения этих операций (обычно скобками различного вида). Количество величин, входящих в алгебраическое выражение, должно быть конечным.

Виды алгебраических выражений

Из чисел и переменных с помощью знаков сложения, вычитания, умножения, деления, возведения в рациональную степень и извлечения корня и с помощью скобок составляют алгебраические выражения.

Примеры алгебраических выражений:

139083

Если алгебраическое выражение не содержит деления на переменные и извлечения корня из переменных (в частности, возведения в степень с дробным показателем), то его называют целым выражением. Из написанных выше целыми являются выражения 1), 2) и 6).

Если алгебраическое выражение составлено из чисел и переменных с помощью действий сложения, вычитания, умножения, возведения в степень с натуральным показателем и деления, причем используется деление на выражения с переменными, то его называют дробным выражением. Так, из написанных выше дробными являются выражения 3) и 4).

Целые и дробные выражения называют рациональными выражениями. Так, из написанных выше рациональными являются выражения 1), 2), 3), 4) и 6).

Если в алгебраическом выражении используется извлечение корня из переменных (или возведение переменных в дробную степень), то его называют иррациональным выражением. Так, из написанных выше иррациональными являются выражения 5) и 7).

Итак, алгебраические выражения могут быть рациональными и иррациональными. Рациональные выражения, в свою очередь, разделяются на целые и дробные.

Допустимые значения переменных. Область определения алгебраического выражения

Значения переменных, при которых алгебраическое выражение имеет смысл, называют допустимыми значениями переменных. Множество всех допустимых значений переменных называют областью определения алгебраического выражения (или областью допустимых значений переменных — ОДЗ).

Целое выражение имеет смысл при любых значениях входящих в него переменных. Так, при любых значениях переменных имеют смысл целые выражения 1), 2), 6) из п. 48.

Дробные выражения не имеют смысла при тех значениях переменных, которые обращают знаменатель в нуль. Так, дробное выражение 3) из п. 48 имеет смысл при всех 139084, кроме 139085= 1, а дробное выражение 4) имеет смысл при всех 139086кроме значений 139087

Иррациональное выражение не имеет смысла при тех значениях переменных, которые обращают в отрицательное число выражение, содержащееся под знаком корня четной степени или под знаком возведения в дробную степень. Так, иррациональное выражение 5) имеет смысл только при тех 139088при которых 139089а иррациональное выражение 7) имеет смысл только при 139090(см. п. 48).

Если в алгебраическом выражении переменным придать допустимые значения, то получится числовое выражение; его значение называют значением алгебраического выражения при выбранных значениях переменных.

Пример:

Найти значение выражения

139091

Решение:

Имеем 139092

Понятие тождественного преобразования выражения. Тождество

Рассмотрим два выражения

139093

При х = 2 имеем 139094 139096Числа 0 и 3 называют соответственными значениями выражений 139097при х = 2. Найдем соответственные значения тех же выражений при х = 1:

139098

Соответственные значения двух выражений могут быть равными друг другу (так, в рассмотренном примере выполняется равенство139099), а могут и отличаться друг от друга (так, в рассмотренном примере 139100).

Если соответственные значения двух выражений, содержащих одни и те же переменные, совпадают при всех допустимых значениях переменных, то выражения называют тождественно равными.

Тождеством называют равенство, верное при всех допустимых значениях входящих в него переменных.

Так, тождественно равны выражения 139101139102

139103

Пропорция (см. п. 30) 139104есть тождество при всех значениях 139105, кроме 139106= 1, поскольку при 139107= 1 знаменатели дробей обращаются в нуль, т. е. дроби не будут иметь смысла.

Замена выражения 139108выражением 139109(сократили на с) есть тождественное преобразование выражения 139108при ограничениях 139110Значит, 139108= 139109— тождество при всех значениях переменных, кроме Ь = 0, с = 0. Верные числовые равенства также называют тождествами.

Замену одного выражения другим, тождественно равным ему, называют тождественным преобразованием выражения.

Эта лекция взята со страницы полного курса лекций по изучению предмета «Математика»:

Смотрите также дополнительные лекции по предмету «Математика»:

Присылайте задания в любое время дня и ночи в ➔ 396373396374

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Источник

Понравилась статья? Поделить с друзьями: