световые физические явления это определение

Световые явления в физике, их примеры и краткая терминология

Содержание:

Оптика – раздел физики, изучающий свет, световые явления – процессы, связанные с распространением электромагнитных волн видимого для человека частотного диапазона. Наш глаз воспринимает свет с длиной волны 400-760 ± 20 нм. Рассмотрим распространённые световые явления, примеры таких в природе, быту. Кратко объясним причины их возникновения.

Что собой представляют световые явления в физике

Процессы, связанные с распространением видимого света в вакууме или веществе (газ, прозрачная для света материя, например, стекло), относятся к световым. Карандаш, который кажется сломанным после опускания в стакан, наполовину заполненный водой; увеличивающиеся и искажающиеся лица при взгляде в кривые зеркала; образовавшаяся радуга – явления, досконально изученные оптикой. Ниже – примеры распространённых световых явлений в физике.

Трава зелёная, потому что в ней есть вещество хлорофилл, которое из видимого спектра поглощает все электромагнитные волны, кроме зелёных. Отражаясь, они становятся восприимчивы человеческим зрением.

Второй аспект – спектральный состав лучей, освещающих объект. Смотрели на привычный мир через цветовые фильтры или разноцветные стёкла? Цвет окружающих вещей изменяется. Под лучами солнца трава зелёная. Если её осветить жёлтым цветом, она потемнеет: жёлтый свет растением поглотится, а зелёного, который отразится и попадёт на сетчатку глаза, в световом потоке нет.

f98ee83b40076d174dbee92d7249d0abc1e80b8a

Тень и полутень, прямолинейность распространения

В прозрачной однородной среде траектория распространения световых лучей – идеально ровная прямая. Явление объясняет понятие тени, полутени, затмения. Если источник имеет крохотные габариты по отношению к расстоянию от него до освещаемого тела, последнее отбрасывает тень. Крупные источники света или расположенные вблизи с предметом создают тень и полутень.

Преломление и отражение

Преломление световых лучей возникает при переходе света между средами, где свет распространяется с разной скоростью. Отражение – способ взаимодействия электромагнитных волн со средой, вследствие которого волновой фронт отражается в среду, откуда пришёл.

Приборы для управления светом

Линзы – одни из первых оптических приборов, применяющихся для сбора, рассеивания, перенаправления световых пучков. Плоские и кривые зеркала (гиперболические, параболические) – отполированные поверхности с коэффициентом отражения

90%. Отражают находящиеся перед ними предметы.

95bb987360b7b44c771f4b3194de9dbeb7542502

Примеры световых явлений в природе

Кроме искусственных в природе полно естественных световых явлений. Они возникают в космосе, атмосфере планеты. Свет излучают и отражают даже живые организмы.

Многие животные излучают видимый для человеческого глаза свет: светлячки, биолюминесцентные бактерии, медузы, рыба-фонарик, сверкающие кальмары.

05a6628cc4da31ae82514910a998467cd6aa305e

Явление возникает благодаря биолюминесценции – самостоятельному или возникающему вследствие деятельности симбионтов.

Источник

Световые физические явления это определение

Свет – это один из нескольких видов излучения. Его источником может быть Солнце, лампа или иное раскаленное тело. Свет проникает сквозь прозрачную воду, воздух или стекло. От большинства других, особенно блестящих как зеркало материалов он отражается. Благодаря свету мы можем видеть и общаться между собой.

Солнце и горящие лампы, экран телевизора или просто открытый огонь светятся своим собственным светом. А большинство окружающих нас предметов, света не излучают и видим мы их только благодаря тому, что они свет отражают и он попадает нам в глаза. Предметы белого цвета отражают света больше, а потому и выглядят ярче. Черный цвет почти полностью свет поглощает и не отражает его совсем. От зеркала свет без потерь и искажений отражается полностью, поэтому глядя в него наши глаза, видят в нем наше отражение.

Обычно распространение света идет по прямым линиям, но если на его пути есть преграда, через которую он не проходит, то за ней образуется тень. Когда свет попадает в прозрачную среду, как вода или стекло не под углом 90 градусов то меняет свое направление. Это явление называют рефракцией или преломлением. Это объясняется меньшей, чем в воздухе, скоростью распространения света в них. Именно поэтому соломинка в стакане с прозрачным напитком выглядит надломленной.

Белый свет представляет собой смесь всех цветов спектра. Спектром – это все составляющие света, которые можно увидеть, пропустив белый свет через призму (четырехгранный треугольный стеклянный брусок). Все составляющие цвета преломляются в призме под разным углом и набор этих цветов (спектр) становится виден.

Свет являет собой совокупность сверх коротких волн, расходящихся от источника подобно волнам воды расходящихся по ее поверхности от брошенного камня. Расстояние от вершины одной волны до другой называют длиной волны. У света эти расстояния ничтожно малы: более 2000 волн умещаются на булавочной головке. Свет разных цветов и длину волны имеет разную. Самые длинные волны красного света. А самые короткие – фиолетового.

Источник

Световые явления. Свойства света

Цель работы – изучить световые явления и свойства света на опытах, рассмотреть три основных свойства света: прямолинейность распространения, отражение и преломление света в разных по плотности средах.

Задачи:

Актуальность

В повседневной жизни мы постоянно сталкиваемся со световыми явлениями и их различными свойствами, работа многих современных механизмов и приборов также связана со свойствами света. Световые явления стали неотъемлемой частью жизни людей, поэтому их изучение актуально.

Приведённые ниже опыты объясняют такие свойства света, как прямолинейность распространения, отражение и преломление света.

Для провидения и описания опытов использовано 13-е стереотипное издание учебника А. В. Перышкина «Физика. 8 класс.» (Дрофа, 2010)

Техника безопасности

Электрические приборы, задействованные в опыте, полностью исправны, напряжение на них не превышает 1.5 В.

Оборудование устойчиво размещено на столе, рабочий порядок соблюдён.

По окончанию проведения опытов электрические приборы выключены, оборудование убрано.

Опыт 1. Прямолинейное распространение света. (стр. 149, рис. 120), (стр.149, рис. 121)

Цель опыта – доказать прямолинейность распространения световых лучей в пространстве на наглядном примере.

Прямолинейное распространение света – его свойство, с которым мы встречаемся наиболее часто. При прямолинейном распространении энергия от источника света направляется к любому предмету по прямым линиям (световым лучам), не огибая его. Этим явлением можно объяснить существование теней. Но кроме теней существуют еще и полутени, частично освещённые области. Чтобы увидеть, при каких условиях образуются тени и полутени и как при этом распространяется свет, проведём опыт.

Оборудование: непрозрачная сфера (на нити), лист бумаги, точечный источник света (карманный фонарь), непрозрачная сфера (на нити) меньше размером, для которой источник света не будет являться точечным, лист бумаги, штатив для закрепления сфер.

Ход опыта

Образование тени

Мы видим, что результатом эксперимента стала равномерная тень. Предположим, что свет распространялся прямолинейно, тогда образование тени можно легко объяснить: свет, идущий от точечного источника по световому лучу, касающийся крайних точек сферы продолжил идти по прямой линии и за сферой, из-за чего на листе пространство за сферой не освещено.

Предположим, что свет распространялся по кривым линиям. В этом случае лучи света, искривляясь, попали бы и за сферу. Тени бы мы не увидели, но в результате проведения опыта тень появилась.

Теперь рассмотрим случай, при котором образуется полутень.

Образование тени и полутени

В этот раз результаты эксперимента – тень и полутень. Как образовалась тень уже известно из примера выше. Теперь, чтобы показать, что образование полутени не противоречит гипотезе о прямолинейном распространении света, необходимо пояснить это явление.
В этом опыте мы взяли источник света, не являющийся точечным, то есть состоящий из множества точек, по отношению к сфере, каждая из которых испускает свет во всех направлениях. Рассмотрим самую верхнюю точку источника света и световой луч, исходящий из неё к самой нижней точке сферы. Если пронаблюдать за движением луча за сферой до листа, то мы заметим, что он попадает на границу света и полутени. Лучи из подобных точек, идущие в таком направлении (от точки источника света к противоположной точке освещаемого предмета) и создают полутень. Но если рассматривать направление светового луча из выше обозначенной точки к верхней точке сферы, то будет отлично видно, как луч попадает в область полутени.

Из этого опыта мы видим, что образование полутени не противоречит прямолинейному распространению света.

Вывод

С помощью этого опыта я доказала, что свет распространяется прямолинейно, образование тени и полутени доказывает прямолинейность его распространения.

Явление в жизни

Прямолинейность распространения света широко применяется на практике. Самым простым примером является обыкновенный фонарь. Также это свойство света используется во всех устройствах, в составе которых есть лазеры: лазерные дальномеры, приспособления для резки металла, лазерные указки.

В природе свойство встречается повсеместно. Например, свет, проникающий через просветы в кроне дерева, образует хорошо различимую прямую линию, проходящую сквозь тень. Конечно, если говорить о больших масштабах, стоит упомянуть о солнечном затмении, когда луна отбрасывает тень на землю, из-за чего солнце с земли (естественно, речь идет о затененном ее участке) не видно. Если бы свет распространялся не прямолинейно, этого необычного явления не существовало бы.

Ссылка на видео проведения опыта: https://www.dropbox.com/s/eu0r135b5o2cx9b/VID_20170517_222801.mp4?dl=0

Опыт 2. Закон отражения света. (с.154, рис. 129)

Цель опыта – доказать, что угол падения луча равен углу его отражения.

Отражение света также является важнейшим его свойством. Именно благодаря отражённому свету, который улавливается человеческим глазом, мы можем видеть какие-либо объекты.

По закону отражения света, лучи, падающий и отражённый, лежат в одной плоскости с перпендикуляром, проведённым к границе раздела двух сред в точке падения луча; угол падения равен углу отражения. Проверим, равны ли данные углы, на опыте, где в качестве отражающей поверхности возьмём плоское зеркало.

Оборудование: специальный прибор, представляющий собой диск с нанесённой круговой шкалой, укреплённый на подставке, в центре диска находится небольшое плоское зеркало, расположенное горизонтально (такой прибор можно изготовить в домашних условиях, используя вместо диска с круговой шкалой транспортир.), источник света – осветитель, прикреплённый к краю диска или лазерная указка, лист для нанесения измерений.

Ход опыта

Результаты опыта в первом случае:

Из опыта видно, что угол падения светового луча равен углу его отражения. Свет, попадая на зеркальную поверхность, отражается от неё под тем же углом.

Вывод

С помощью опыта и проведённых измерений я доказала, что при отражении света угол его падения равен углу отражения.

Явление в жизни

С этим явлением мы встречаемся повсеместно, так как воспринимаем глазом отражённый от предметов свет. Ярким видимым примером в природе могут служить блики яркого отражённого света на воде и на других поверхностях с хорошей отражательной способностью (поверхность поглощает меньше света чем отражает). Также, следует вспомнить солнечные зайчики, которые может пускать с помощью зеркала каждый ребёнок. Они не что иное, как отражённый от зеркала луч света.

Человек использует закон отражения света в таких приборах, как перископ, зеркальный отражатель света (к примеру, отражатель на велосипедах).

Кстати, с помощью отражения света от зеркала фокусники создавали многие иллюзии, например, иллюзию «Летающая голова». Человек помещался в ящик среди декораций так, что из ящика была видна только его голова. Стенки ящика закрывали наклонённые к декорациям зеркала, отражение от которых не давало увидеть ящик и казалось, что под головой ничего нет и она висит в воздухе. Зрелище необычное и пугающее. Фокусы с отражением имели место и в театрах, когда на сцене нужно было показать призрака. Зеркала «затуманивали» и наклоняли так, чтобы отражённый свет из ниши за сценой был виден в зрительном зале. В нише уже появлялся актёр, играющий призрака.

Ссылка на видео проведения опыта: https://www.dropbox.com/s/hysbxxeflb7n5zn/VID_20170517_222039.mp4?dl=0

Опыт 3. Преломление света. (стр. 159, рис. 139)

Цель опыта — доказать, что отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух сред; доказать, что угол падения светового луча (≠ 0°), идущего из менее плотной среды в более плотную, больше угла его преломления.

В жизни мы часто встречаемся с преломлением света. Например, кладя в прозрачный стакан с водой совершенно прямую ложку мы видим, что её изображение изгибается на границе двух сред (воздуха и воды), хотя на самом деле ложка остаётся прямой.

Чтобы получше рассмотреть это явление, понять, почему оно происходит и доказать закон преломления света (лучи, падающий и преломлённый, лежат в одной плоскости с перпендикуляром, проведённым к границе раздела двух сред в точке падения луча; отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух сред) на примере, проведём опыт.

Оборудование: две среды разной плотности (воздух, вода), прозрачная тара для воды, источник света (лазерная указка), лист бумаги.

Ход опыта

Предположим, что световые лучи, проходя через среды разной плотности, испытывали преломление. При этом углы падения и преломления не могут быть равны, а отношения синусов этих углов не равны одному. Если преломления не произошло, то есть свет перешёл из одной среды в другую, не меняя своё направление, то данные углы будут равными (отношение синусов равных углов равно одному). Чтобы подтвердить или опровергнуть предположение, рассмотрим результаты опыта.

Источник

Физика

Именная карта банка для детей
с крутым дизайном, +200 бонусов

Закажи свою собственную карту банка и получи бонусы

План урока:

Что такое свет? Источники света

Много тысячелетий прошло прежде, чем была выяснена природа этого замечательного явления – свет. Десятки гипотез, предположений, догадок выдвигались учеными. Но вот в конце девятнадцатого века Д. Максвелл и Г. Герц установили, что природа света электромагнитная.

Значение света в жизни человека и в природе громадно. Зарождение и развитие всего живого происходит под влиянием тепла и, конечно, света.

Свет для человека – важнейшее средство познания окружающего мира.

Основной источник света для всей Земли – это Солнце. Световые потоки устремляются к планетам от Солнца благодаря ядерным реакциям, происходящим на нем.

При изучении тепловых явлений одним из видов теплообмена названо излучением, с помощью которого Земля получает от Солнца тепло. Тепло невидимо. Та часть излучения, которая видима глазом человека, называется видимым излучением.

Именно это излучение рассматривается как световое явление.

Не умея объяснить природу света, многие древние ученые придерживались мнения о том, что световые лучи исходят из глаз человека и «ощупывают» все вокруг. Некоторые считали, что есть другое объяснение свету, но не могли его сделать, не зная теории электромагнетизма. Как же далеки были эти люди от современных знаний в оптической области физики.

Сейчас известна природа света, свойства его, строение глаза, создано большое число оптических устройств и простых приборов. Световые явления широко используются в жизни человека.

Создается световое излучение источниками света, которые бывают естественными и искусственными. Сама природа создала естественные источники света. Искусственные источники придумал и изготовил человек.

Естественные (природные) источники света:

Среди таких источников есть яркие, дающие много света, а есть едва видимые в темноте.

Например, науке известно уже около семидесяти видов светящихся грибов. Из них некоторые можно увидеть ночью на расстоянии десяти метров.

Светиться могут подгнившие грузди и старые сыроежки.

Подкрашенный фосфором циферблат часов.

Искусственные источники света:

Не может деятельность человека протекать без освещения. Трудно представить современный город в ночное время без освещенного дома, улицы, квартиры.

Созданные человеком источники света.

Искусственное освещение создано человеком лишь благодаря научному подходу к изучению таких интересных явлений природы – световых.

Распространение света

Чтобы лучше понять, как свет распространяется, введено понятие светового луча. А там, где лучи, там геометрия. Поэтому появился новый подход к световым явлениям, который называется геометрическая оптика.

Для практического изучения света учеными рассматриваются узкие пучки световых лучей. Для их получения используют непрозрачные экраны с отверстиями.

Каковы же главные законы, по которым свет распространяется?

Один из них подтверждается достаточно легко. Человек, который не хочет, чтобы яркий свет бил ему в глаза, приставляет ко лбу ладонь. Он видит окружающие предметы, а свет прямо в глаза ему не попадает.

Это говорит о том, что свет не может обогнуть ладонь и попасть в глаза наблюдателю. Этот пример показывает, что свет идет по прямой.

Значит, существует закон прямолинейного распространения света. Он звучит так:

Как на рисунке, луч света не пойдет. Он не может огибать препятствия.

Первая научная формулировка этого важного закона была дана в третьем веке до нашей эры Евклидом.

В соответствии с этим законом свет в одной и той же среде не может идти по ломаной траектории и огибать препятствия. Отсюда вытекает понятие тени. Тень сопровождает человека всюду.

На экране тень и полутень. Источник

Если поместить между источником света предмет, например, шар, он перекроет путь световых лучей. За шаром на экране в центре тень более темная, чем по краям. Почему так?

Объяснить это можно, проведя два эксперимента.

Первый. Источник по своим размерам очень мал по сравнению с шаром и расстоянием до экрана. Такой источник света называют точечным. Пусть это будет светящаяся точка А. Та часть прямых лучей, которая упирается на шар не дойдет до экрана, и в соответствующей области его образуется темное пятно – тень. Лучи, идущие выше и ниже шара достигают цели и на экране в этой области светло.

Второй эксперимент. Берется источник света большой или сравнимый с предметом, помещенным между источником и экраном. Такой источник содержит огромное число светящихся точек, испускающих лучи. Из каждой точки, которые находятся между А и В выходит такой же пучок света, как и в первом эксперименте.

Потоки лучей из разных точек источника устремляются к экрану, но доходят до него не все. Мешает шар, дающий для каждого потока свою тень. Все тени пересекаются в центре экрана и образуют общее темное пятно – общую тень. Вокруг нее образуется область размытая, куда от одних точек свет попадает, а от других нет – это полутень.

Природа предоставила человеку яркий пример распространения света, который очень напоминает второй эксперимент. Это солнечные и лунные затмения.

Они происходят, когда Солнце, Луна и Земля, двигаясь по законам Солнечной системы, выстраиваются в одну линию, как показано на схемах.

Схема солнечного затмения. Источник

Схема лунного затмения. Источник

Затмения для науки представляют большой интерес, особенно солнечные. Они позволяют наблюдать, хоть и кратковременно, состояние солнечной атмосферы, процессы внутри ее и состав.

Отражение света и его законы

Наверное, нет человека, который бы не наблюдал одно из явлений. Снежинки попадают в свет фар автомобиля или солнечные лучи попадают в запыленную комнату, или солнце освещает влажный воздух леса.

Сами снежинки не являются источниками света, но человек их видит. Но видит только те, которые падают на землю в свете фар. Падающий снег за пределами автомобиля человеческий глаз не фиксирует.

В пыльной комнате наблюдается плавное движение мелких пылинок в том месте, где через окно проникает солнечный свет. Но ведь это не значит, что пыль в комнате находится только там, где лучи света. Пылинки летают по всей комнате, но не видны глазом.

В утреннем влажном лесу там, куда прокрадываются яркие лучи, становятся видны мельчайшие капельки воды и лесные пылинки. Они тоже есть по всему лесу, но видны только, где свет.

Эти явления объясняются тем, что человеческий глаз воспринимает свет, идущий от источника или отраженный от освещенного тела.

Если взять в темноте лист бумаги, то сказать, какого цвета этот лист, невозможно. Лист – не источник света и не освещен, поэтому он невидим. Другое дело, если лист попал в руки в светлом помещении. Человек его видит, так как бумага отражает световые лучи, отраженные лучи уже попадают в глаз.

Так снежинки в свете фар, капельки воды и пылинки на свету отражают лучи света, которые и воспринимает человек.

Для экспериментального подтверждения этого закона используется устройство, называемое оптическим диском.

На светлый круг этого прибора нанесена шкала с градусами. Яркая лампочка осветителя находится в светонепроницаемом футляре с очень узким отверстием. В центре диска прикрепляется отражающая поверхность, например, зеркальная пластинка. Осветитель имеет возможность перемещаться вокруг диска.

Из осветителя луч света от лампочки падает на пластинку и отражается от нее. Если переместить осветитель, направление падения луча света изменится. Соответственно изменится и направление отражения света. Но все это происходит в одной плоскости диска, что подтверждает первый закон отражения света.

При сравнении углов, которые образуются световыми лучами в этих опытах, подтверждается второй закон отражения света. Но прежде, чтобы его понять, следует изучить геометрическую схему отражения света.

На схеме представлен геометрический подход к изучению световых явлений. Пучки света заменены геометрическими лучами и добавлены некоторые геометрические элементы, нужные для исследования.

Нужно четко запомнить: углы падения и отражения берутся не к поверхности отражения, а к проведенному в точку падения перпендикуляру.

Если передвигать осветитель вокруг диска, угол падения будет меняться. Угол отражения тоже изменится и будет таким же, как угол падения. Это свойство отражения является вторым законом отражения света:

Если падающий луч пойдет от точки В по направлению ВО, то он отразится от поверхности MN как раз по линии ОА. Это свойство называют обратимостью световых лучей, о чем говорили еще в древности, но дать научного объяснения не могли.

Почему сломался карандаш?

Наблюдательный рыболов видит, что весла от его лодки при погружении в воду как будто ломаются. Когда весла над поверхностью воды, они снова прямые. Почему? Это объясняют оптические законы.

Взмахнуть рукой в воздухе гораздо легче, чем провести рукой внутри воды. Вот и свет проходит в разных средах (например, в вакууме, стекле, воздухе, алмазе, воде) тоже по-разному. На границе двух различных сред меняется направление хода лучей света.

Углы падения и преломления, которые определяются, как и при отражении, с помощью перпендикуляра к границе раздела, в данном случае не равны.

Вот почему карандаш выглядит в стакане сломанным. Здесь не нужно путать световые лучи и сам карандаш. Лучи идут человеку в глаз, как показано на чертеже. То, что карандаш воспринимается глазом в сломанном виде – это оптическая иллюзия, созданная ходом всех лучей, отражающихся от карандаша.

Как проходит свет в разных средах?

Не всегда угол преломления меньше угла падения, как в приведенных примерах. Если вспомнить, что свет – это электромагнитная волна, то значит, он обладает скоростью (300 000 км/с в вакууме). В веществах скорость света другая, всегда меньше.

На своем пути лучи света проходят по различным прозрачным веществам, которые образуют оптическую среду. Если скорость света в одной среде больше, чем в другой, то первая среда называется оптически менее плотной, а вторая – оптически более плотной средой. Например, попадая в воду из воздуха, лучи света переходят из оптически менее плотной среды (воздух) в оптически более плотную (воду).

Преломление лучей на границе раздела связано с оптической плотностью каждой из сред следующим правилом:

Отсюда видно, что угол преломления может быть больше или меньше угла падения. Все объясняется оптическими свойствами среды, куда переходит световой луч.

Источник

Понравилась статья? Поделить с друзьями: