куб это геометрическая фигура определение

Что такое куб: определение, свойства, формулы

В публикации мы рассмотрим определение и основные свойства куба, а также формулы, касающиеся данной геометрической фигуры (расчет площади поверхности, периметра ребер, объема, радиуса описанного/вписанного шара и т.д.).

Определение куба

Куб – это правильный многогранник, все грани которого являются квадратами.

figura kub risunok 1

Примечание: куб является частным случаем параллелепипеда или призмы.

Свойства куба

Свойство 1

Как следует из определения, все ребра и грани куба равны. Также противоположные грани фигуры попарно параллельны, т.е.:

Свойство 2

Диагонали куба (их всего 4) равны и в точке пересечения делятся пополам.

figura kub risunok 2

Свойство 3

Все двугранные углы куба (углы между двумя гранями) равны 90°, т.е. являются прямыми.

figura kub risunok 3

Например, на рисунке выше угол между гранями ABCD и AA1B1B является прямым.

Формулы для куба

Примем следующие обозначения, которые будут использоваться далее:

Диагональ

Длина диагонали куба равняется длине его ребра, умноженной на квадратный корень из трех.

figura kub formula 4

Диагональ грани

Диагональ грани куба равна его ребру, умноженному на квадратный корень из двух.

figura kub formula 1

Площадь полной поверхности

Площадь полной поверхности куба равняется шести площадям его грани. В формуле может использоваться длина ребра или диагонали.

figura kub formula 2

Периметр ребер

Периметр куба равен длине его ребра, умноженной на 12. Также может рассчитываться через диагональ.

figura kub formula 7

Объем

Объем куба равен длине его ребра, возведенной в куб.

figura kub formula 3

Радиус описанного вокруг шара

Радиус шара, описанного около куба, равняется половине его диагонали.

figura kub formula 5

Радиус вписанного шара

Радиус вписанного в куб шара равен половине длины его ребра.

Источник

Куб это геометрическая фигура определение

220px %D0%A0%D0%B0%D0%B7%D0%B2%D0%B5%D1%80%D1%82%D0%BA%D0%B0 %D0%BA%D1%83%D0%B1%D0%B0

magnify clip

Куб или правильный гексаэдр — правильный многогранник, каждая грань которого представляет собой квадрат. Частный случай параллелепипеда и призмы.

В различных дисциплинах используются значения термина, имеющие отношения к тем или иным свойствам геометрического прототипа. В частности, в аналитике (OLAP-анализ) применяются так называемые аналитические многомерные кубы, позволяющие в наглядном виде сопоставить данные из различных таблиц.

Содержание

Свойства куба

Диагональю куба называют отрезок, соединяющий две вершины, симметричные относительно центра куба. Диагональ куба находится по формуле 558be9aa3eccc1ccc01389534f325e46, где d — диагональ, а — ребро куба.

Тела кубической формы

В микромире

Примечания

См. также

Полезное

Смотреть что такое «Куб» в других словарях:

куб — куб, а, мн. ч. к уб ы, к уб ов … Русский орфографический словарь

куб — 1. КУБ, а; кубы; м. [греч. kybos] 1. Геометрическое тело правильный шестигранник, все грани которого квадраты; предмет, имеющий форму такого шестигранника. Начертить куб. Композиция из гипсовых кубов и призм. Мраморный куб памятника. 2. Разг. =… … Энциклопедический словарь

КУБ — ОАО АКБ «Кузбассугольбанк» http://cbank.ru/​ организация, фин., энерг. КУБ кнопочный пост управления взрывобезопасный КУБ ОАО «Кредит Урал банк» http://www.credit … Словарь сокращений и аббревиатур

куб — сущ., м., употр. сравн. часто Морфология: (нет) чего? куба, чему? кубу, (вижу) что? куб, чем? кубом, о чём? о кубе; мн. что? кубы и кубы, (нет) чего? кубов и кубов, чему? кубам и кубам, (вижу) что? кубы и кубы, чем? кубами и кубами, о чём? о… … Толковый словарь Дмитриева

кубіт — кубі/т, род. кубіта, мн. кубіти, род. мн. кубітів одиниця інформації, що закодована в квантовій системі, фізичний носій інформації, що може перебуватив станах |0> та |1> і будь якій суперпозиції цих станів. • Стан кубіта може змінюватись… … Фізико-технічний словник-мінімум

КУБ — 1. КУБ1, куба, муж. (греч. kybos). 1. Правильный шестигранник, все грани которого (квадраты (мат.). Начертить куб. 2. Мера объема, равная кубическому метру. Куб дров. 3. Сосуд для перегонки или кипячения жилкостей в форме шара или цилиндра с… … Толковый словарь Ушакова

КУБ — 1. КУБ1, куба, муж. (греч. kybos). 1. Правильный шестигранник, все грани которого (квадраты (мат.). Начертить куб. 2. Мера объема, равная кубическому метру. Куб дров. 3. Сосуд для перегонки или кипячения жилкостей в форме шара или цилиндра с… … Толковый словарь Ушакова

КУБ — (от латинского cubus, от греческого kybos игральная кость), 1) один из 5 типов правильных многогранников, имеющий гранями квадраты, 12 ребер, 8 вершин, в каждой вершине сходятся 3 ребра. Куб иногда называют гексаэдром. 2) Третья степень а3 числа… … Современная энциклопедия

КУБ — КУБ, в математике результат двукратного умножения числа на самого себя. Таким образом, кубом числа а является произведение а х а х а, что записывается как а3. Куб называют также третьей степенью числа. Кубом именуется правильная шестисторонняя… … Научно-технический энциклопедический словарь

Источник

Геометрические фигуры. Куб.

Куб или правильный гексаэдр – это правильный многогранник, у которого все грани это квадраты.

Куб является частным случаем параллелепипеда и призмы. 4 сечения куба имеют вид правильных

шестиугольников — это сечения через центр куба перпендикулярно 4-м главным диагоналям.

В кубе насчитывается шесть квадратов. Все вершины куба являются вершинами 3-х квадратов. То есть,

сумма плоских углов у каждой вершины = 270º.

Число сторон у грани – 4;

Общее число граней – 6;

Число рёбер примыкающих к вершине – 3;

Общее число вершин – 8;

Общее число рёбер – 12;

703 87e7813553425f89fbda364759a671bd

Предположим, что а – длина стороны куба, а d — диагональ, тогда:

452 d65c0b2f59c2b835d14d93c5c2bbb44a

62 136362c2dff3844304dd1e96bd36ee03

633 7dfd8e2a331fed3473065e1b3b544689

Диагональ куба – это отрезок, который соединяет 2 вершины, которые симметричны относительно центра

Свойства куба.

перпендикулярно четырём его главным диагоналям.

совмещены с 4-мя вершинами куба и каждое из шести ребер тетраэдра принадлежат граням куба. В 1-м

случае каждая вершина тетраэдра принадлежит граням трехгранного угла, вершиной совпадающего с одной

из вершин куба. Во 2-м случае ребра тетраэдра, которые попарно скрещиваются принадлежат попарно

противоположным граням куба. Такой тетраэдр будет правильным, а его объём будет составлять треть от

6-ти гранях куба, следующие 24 ребра располагаются внутри куба. Каждая из 12 вершин икосаэдра

располагается на 6-ти гранях куба.

Элементы симметрии куба.

Ось симметрии куба может пролегать или сквозь середины ребер, которые

параллельны, не принадлежащих одной из граней, или сквозь точку

пересечения диагоналей противолежащих граней. Центром симметрии

куба будет точка пересечения диагоналей куба.

412 4bd4f662fceb3cebab67a7c93373ab7e

Сквозь центр симметрии куба проходят 9 осей симметрии.

Плоскостей симметрии у куба тоже 9, они пролегают или

через противолежащие ребра (таких плоскостей 6), или

через середины противолежащих ребер (таких 3).

Источник

Среди многогранников куб – это один из наиболее известных объектов, знакомых с далёкого детства. Более подробно эта тема изучается на уроках геометрии в старших классах, когда от фигур на плоскости переходят к телам в пространстве.

Кубу можно дать определение различными способами, каждый из которых только подчеркнёт тот или иной класс тел в пространстве, выделит основные признаки и особенности:

многогранник, у которого все рёбра равны, а грани попарно перпендикулярны;

прямая призма, все грани которой есть квадраты;

прямоугольный параллелепипед, все рёбра которого равны.

Всеми этими и многими другими подобными формулировками геометрия позволяет описывать одну и ту же фигуру в пространстве.

Элементы куба

Основными элементами многогранника считаются грани, рёбра, вершины.

Грань

Плоскости, образующие поверхность куба, называются гранями. Другое название – стороны.

Интересно, сколько граней у куба и каковы их особенности. Всего граней шесть. Две из них, параллельные друг другу, считаются основаниями, остальные – боковыми.

Грани куба попарно перпендикулярны, являются квадратами, равны между собой.

Ребро

Линии пересечения сторон называются рёбрами.

Не каждый школьник может ответить, сколько рёбер у куба. Их двенадцать. Они имеют одинаковые длины. Те из них, что обладают общим концом, расположены под прямым углом по отношению к любому из двух остальных.

Рёбра могут пересекаться в вершине, быть параллельными. Не лежащие в одной грани ребра, являются скрещивающимися.

Вершина

Точки пересечения рёбер называются вершинами. Их число равно восьми.

Центр грани

Отрезок, соединяющий две вершины, не являющийся ребром, называется диагональю.

Пересечение диагоналей грани считается центром грани – точкой, равноудалённой от всех вершин и сторон квадрата. Это есть центр симметрии грани.

Центр куба

Пересечение диагоналей куба является его центром – точкой, равноудалённой от всех вершин, рёбер и сторон многогранника.

Это есть центр симметрии куба.

Ось куба

Рассматриваемый многогранник имеет несколько осей ортогональной (под прямым углом) симметрии. К ним относятся: диагонали куба и прямые, проходящие через его центр параллельно рёбрам.

Диагональ куба

Отрезок, соединяющий две вершины, не принадлежащие одной стороне, называется диагональю рассматриваемого многогранника.

Учитывая, что ребра куба имеют равные измерения a, можно найти длину диагонали:

Формула доказывается с помощью дважды применённой теоремы Пифагора.

Все диагонали куба равны между собой и точкой пересечения делятся пополам.

Диагональ грани куба

Длина диагонали грани в √2 раз больше ребра, то есть:

Эта формула доказывается также с помощью теоремы Пифагора.

Объем куба

Как для любого параллелепипеда, объём куба равен произведению всех трёх измерений, которые в данном случае равны:

Периметр куба

Сумма длин всех рёбер равна:

Площадь поверхности

Сумма площадей всех граней называется площадью поверхности куба. Она равна:

Сфера, вписанная в куб

Такая сфера имеет центр, совпадающий с центром куба.

Радиус равен половине ребра:

Сфера, описанная вокруг куба

Как для вписанной сферы, центр совпадает с точкой пересечения диагоналей, радиус равен половине диагонали:

Координаты вершин куба

В зависимости от расположения фигуры в системе координат, можно по-разному рассчитывать координаты вершин.

Наиболее часто используют следующий способ. Одна из вершин совпадает с началом координат, рёбра параллельны осям координат или совпадают с ними, координаты единичного куба в этом случае будут равны:

Такое расположение удобно для введения четырёхмерного пространства (вершины задаются всеми возможными бинарными наборами длины 4).

Свойства куба

Плоскость, рассекающая куб на две части, есть сечение. Его форма выглядит как выпуклый многоугольник.

Построение сечений необходимо для решения многих задач. Как правило, используется метод следов или условие параллельности прямых и плоскостей.

у куба все грани равны, являются квадратами;

у куба все рёбра равны;

один центр и несколько осей симметрии.


Источник

Куб это геометрическая фигура определение

Куб – правильный многогранник, каждая грань которого представляет собой квадрат. Все ребра куба равны.

Свойства куба:

2. Противоположные грани попарно параллельны.

3. Все двугранные углы куба – прямые.

Прямоугольный параллелепипед

Параллелепипед называется прямоугольным, если его боковые ребра перпендикулярны к основанию, а основания представляют собой прямоугольники.

1. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений (длины, ширины, высоты).

Формулы вычисления объема и площади поверхности прямоугольного параллелепипеда.

Чтобы были понятны формулы, введем обозначения:

$с$-высота(она же боковое ребро);

$S_<п.п>$-площадь полной поверхности;

$V=a·b·c$ – объем равен произведению трех измерений прямоугольного параллелепипеда.

Пирамида

Высотой ($h$) пирамиды является перпендикуляр, опущенный из ее вершины на плоскость основания.

Формулы вычисления объема и площади поверхности правильной пирамиды.

В основании лежат правильные многоугольники, рассмотрим их площади:

Задачи на нахождение объема составного многогранника:

Задачи на нахождение площади поверхности составного многогранника.

— Если можно составной многогранник представить в виде прямой призмы, то находим площадь поверхности по формуле:

Чтобы найти площадь основания призмы, надо разделить его на прямоугольники и найти площадь каждого.

— Если составной многогранник нельзя представить в виде призмы, то площадь полной поверхности можно найти как сумму площадей всех граней, ограничивающих поверхность.

Источник

Понравилась статья? Поделить с друзьями:
359 01fca031a48679a8a9bb5ba70c9efb4b